首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   187篇
  国内免费   28篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   9篇
  2019年   9篇
  2018年   4篇
  2017年   29篇
  2016年   41篇
  2015年   32篇
  2014年   43篇
  2013年   50篇
  2012年   28篇
  2011年   29篇
  2010年   22篇
  2009年   35篇
  2008年   34篇
  2007年   31篇
  2006年   42篇
  2005年   38篇
  2004年   48篇
  2003年   23篇
  2002年   18篇
  2001年   21篇
  2000年   20篇
  1999年   11篇
  1998年   13篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   11篇
  1992年   12篇
  1991年   7篇
  1990年   10篇
  1989年   5篇
  1988年   1篇
排序方式: 共有720条查询结果,搜索用时 312 毫秒
71.
The nucleolus solution for cooperative games in characteristic function form is usually computed numerically by solving a sequence of linear programing (LP) problems, or by solving a single, but very large‐scale, LP problem. This article proposes an algebraic method to compute the nucleolus solution analytically (i.e., in closed‐form) for a three‐player cooperative game in characteristic function form. We first consider cooperative games with empty core and derive a formula to compute the nucleolus solution. Next, we examine cooperative games with nonempty core and calculate the nucleolus solution analytically for five possible cases arising from the relationship among the value functions of different coalitions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
72.
The “gold‐mining” decision problem is concerned with the efficient utilization of a delicate mining equipment working in a number of different mines. Richard Bellman was the first to consider this type of a problem. The solution found by Bellman for the finite‐horizon, continuous‐time version of the problem with two mines is not overly realistic since he assumed that fractional parts of the same mining equipment could be used in different mines and this fraction could change instantaneously. In this paper, we provide some extensions to this model in order to produce more operational and realistic solutions. Our first model is concerned with developing an operational policy where the equipment may be switched from one mine to the other at most once during a finite horizon. In the next extension we incorporate a cost component in the objective function and assume that the horizon length is not fixed but it is the second decision variable. Structural properties of the optimal solutions are obtained using nonlinear programming. Each model and its solution is illustrated with a numerical example. The models developed here may have potential applications in other areas including production of items requiring the same machine or choosing a sequence of activities requiring the same resource. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 186–203, 2002; DOI 10.1002/nav.10008  相似文献   
73.
We consider a general linear filtering operation on an autoregressive moving average (ARMA) time series. The variance of the filter output, which is an important quantity in many applications, is not known with certainty because it depends on the true ARMA parameters. We derive an expression for the sensitivity (i.e., the partial derivative) of the output variance with respect to deviations in the model parameters. The results provide insight into the robustness of many common statistical methods that are based on linear filtering and also yield approximate confidence intervals for the output variance. We discuss applications to time series forecasting, statistical process control, and automatic feedback control of industrial processes. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
74.
We study a periodic-review assemble-to-order (ATO) system with multiple components and multiple products, in which the inventory replenishment for each component follows an independent base-stock policy and stochastic product demands are satisfied according to a First-Come-First-Served rule. We assume that the replenishment for various component suffers from lead time uncertainty. However, the decision maker has the so-called advance supply information (ASI) associated with the lead times and thus can take advantage of the information for system optimization. We propose a multistage stochastic integer program that incorporates ASI to address the joint optimization of inventory replenishment and component allocation. The optimal base-stock policy for the inventory replenishment is determined using the sample average approximation algorithm. Also, we provide a modified order-based component allocation (MOBCA) heuristic for the component allocation. We additionally consider a special case of the variable lead times where the resulting two-stage stochastic programming model can be characterized as a single-scenario case of the proposed multistage model. We carry out extensive computational studies to quantify the benefits of integrating ASI into joint optimization and to explore the possibility of employing the two-stage model as a relatively efficient approximation scheme for the multistage model.  相似文献   
75.
针对移动机器人的路径跟踪复杂性问题,设计了一种易于实现的控制系统,其中的跟踪策略改进了传统的视线导航算法,使机器人光滑趋近到期望路径,控制器的设计采用基于模糊逻辑的变速度控制和角速度滑模控制,减小了角速度的抖振,并使控制具有一定的智能化特点.实验结果表明,设计的控制系统即可以保证路径跟踪的精度,同时避免了运动控制的不稳定性.  相似文献   
76.
It is well‐known that the efficient set of a multiobjective linear programming (MOLP) problem can be represented as a union of the maximal efficient faces of the feasible region. In this paper, we propose a method for finding all maximal efficient faces for an MOLP. The new method is based on a condition that all efficient vertices (short for the efficient extreme points and rays) for the MOLP have been found and it relies on the adjacency, affine independence and convexity results of efficient sets. The method uses a local top‐down search strategy to determine maximal efficient faces incident to every efficient vertex for finding maximal efficient faces of an MOLP problem. To our knowledge, the proposed method is the first top‐down search method that uses the adjacency property of the efficient set to find all maximal efficient faces. We discuss this and other advantages and disadvantages of the algorithm. We also discuss some computational experience we have had with our computer code for implementing the algorithm. This computational experience involved solving several MOLP problems with the code.  相似文献   
77.
In this paper, we derive new families of facet‐defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem include two‐ and three‐slope facet‐defining inequalities as well as the first family of four‐slope facet‐defining inequalities. The new valid inequalities for the infinite group problem include families of two‐ and three‐slope extreme inequalities. These new inequalities not only illustrate the diversity of strong inequalities for the finite and infinite group problems, but also provide a large variety of new cutting planes for solving integer and mixed‐integer programming problems. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
78.
针对合成分队不同指挥层级之间的决策交互优化问题,提出了基于主从决策的双层武器目标分配模型。该模型能够体现上下指挥层级之间交互式决策协调优化的特点:上层目标为主攻方向我方遭受威胁最小,下层目标为对敌打击最大。结合合成分队作战决策的特点和要求,提出了一种求解该模型的改进型粒子群优化算法。仿真结果表明,该模型合理有效,改进的求解算法能够获得满意解。  相似文献   
79.
仅有推理公式而没有明确的关系性质,推理无法进行;关系性质虽然确定,却用文字加以说明,推理就是非形式的。怎样摆脱这种两难困境?出路就在于正确揭示关系推理的结构关系并将之符号化。这对完善普通逻辑或关系理论有重要意义。  相似文献   
80.
In this article, the Building Evacuation Problem with Shared Information (BEPSI) is formulated as a mixed integer linear program, where the objective is to determine the set of routes along which to send evacuees (supply) from multiple locations throughout a building (sources) to the exits (sinks) such that the total time until all evacuees reach the exits is minimized. The formulation explicitly incorporates the constraints of shared information in providing online instructions to evacuees, ensuring that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. Arc travel time and capacity, as well as supply at the nodes, are permitted to vary with time and capacity is assumed to be recaptured over time. The BEPSI is shown to be NP‐hard. An exact technique based on Benders decomposition is proposed for its solution. Computational results from numerical experiments on a real‐world network representing a four‐story building are given. Results of experiments employing Benders cuts generated in solving a given problem instance as initial cuts in addressing an updated problem instance are also provided. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号